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1 Introduction

In this paper we study the coupled differential equations describing the current con-
tinuity for electrons and holes in a p-n junction. We use three different approaches,
namely the use of the classical approximation for the recombination rate, leading to
decoupled differential equations, the use of another familiar approximation for the
recombination rate and finally the use of the exact expression for the recombination
rate. The latter 2 cases lead to coupled differential equations which are solved after
they are decoupled and linearized.

We will consider a one-dimensional symmetric p-n junction (Figure 1). We know
that the equations of current continuity for electrons and holes and Gauss equation

are:

deeoF
el i =elp—n+ Np—Na) (1)

0J, on B aJ, dp B
P T TR

where n(x) is the concentration of electrons, p(x) the concentation of holes, F(x)
is the Electric Field, N4 and Np are the concentarations of acceptors and donors
respectively. J,(z) and J,(x) are the current densities for electrons and holes, given

by the relations:

on

dp
R J, = eu,pkF — era—x, (2)

J,=ep.nl +eD,
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Figure 1: The linear and symmetric p-n junction

where fi,,, pt, the mobilities and D,,, D, the diffusion constants for the electrons and
holes respectively. The recombination rate U; is given by the relation:

np — n?

TR ATEY ?

We will try to solve the coupled equations (1), calculate the electron and hole con-
centrations and substitute in equation (3). The integral of the recombination rate in
the depletion region and the base of the diode will give us the current density due

recombination. We will study only the n-half of the diode, without loss of generality.

2 The Classical Approach

If we study the DC case (partial derivatives with respect to time are zero) and the
base of the transistor (F' ~ 0) we arrive, using equations (1) and (2), to the coupled
differential equations: ) )

One of the most common approximations applied, in order to decouple and sim-

D, U,, (4)

plify the equations (4), is to suppose that:

U, ~ (p _pm) ~ (n - nno) (5)

Tp Tn
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where p,,, n,, are the concentrations of holes and electrons respectively at the ter-
minal, which is at position x=c (Figure 1). We realize that the equations decouple

no no

n - 9 ¥4 - 9
Ox? T Ox? Ty

The solutions of equations (6) are:

(e
P (@) = (pa - p)L + oo (7)
S11 (Lpn)
and
sinh (anx)

P (@) = (= o)

where p, = p(w,), pno = p(c), L, = /D,7, (diffusion length), with equivalent formu-
las for the n-quantities. As we see in Figure 1, the depletion region is from 0 to w,
and the base of the diode is from w, to c. We can now get an expression for Us(x)

using equations (5) and (7). We get:

(p — pa,) sinh (52)
Tp sinh (Czﬂ)

P

U (x) = (9)

The integral of the recombination rate (9) from w, to ¢ will give us the current density

due recombination in the n base:

c 2L n — Pno . — %n
base  _ Ubre(g)dr = =2 (P = Pro) sinh? (%) (10)

recomb wn. Tp Slnh (%) v
Let us now treat the depletion region (0 < 2 < w,). According to the literature,
we can obtain an accurate value of the hole concentration, if we simply set the sum
of of the hole drift and diffusion currents equal to zero (J, = 0). From equation (2)
we get the first order differential equation:

on

i —ep,nk

0
era—i = epippF, eD,

and since, according to Einstein’s relation D, = kT'y,/e and D,, = kT p,, /e, we get:

dp € on €
9r ﬁva _n___nF7 (11)
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If Vi; is the built-in junction potential and V; the externally applied one, we may
approximate the Field in the depletion region as:

2(Vei = V3)

F =
Wuw,,

(x — w,) (12)

Equations (11) and (12) give me a faithful expression for the concentration of holes

and electrons at the depletion:

. e Ve —V;
P (@) = poexp [T o — ] (13)
and
e Ve —V;

ni(z) = n, exp [—

(= )] (1)

Now, since we have an acceptable relation for the concentration of holes in the deple-

kT Ww,

tion region, we return to our approximation for the recombination rate (relation (5))

and get the recombination rate for the depletion:

1 e Vi —V,
Udepl ( N [ ¢ — w, 2:| — no) 15
()TppekaTW Ha—wa)t| = p (15)
The current density due to recombination in the depletion region, is the integral

of the equation above:

; . Pro VT oepy
St =e [ U )y Jia = e, 4 X (V) (16)
where,
e Vi —Vj)
K= —_ 1
kT Ww, (17)

We conclude that in the classical approach we can obtain exact expressions for

the recombination current densities in the base and the depletion regions.

3 The Semiexact Approach

Now we will try to be more accurate with respect to the approximation we use for

the recombination rate. We will use an approximation which is closer to the exact
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relation (3):
Us(l‘) n(l‘)p(l‘) —n (18)

I

where ¢ is considered constant, given by:
5 = Tp(nno + nz) + Tn(pno + nz) (19)

Comparing equations (18) and (19) with equation (3) we realize that our assumption
is that n ~ n,, and p ~ p,,. We call it “semiexact” since it is closer to the exact
relation for Us.

Let us treat the base first. The field can be considered zero, so equations (1) and

(2) transform, with the help of equation (18) into:

n _ n(x)p(x) — nf 9p _ n(x)p(z) —nf
D, = -, D = - 2
Ox? ¢ P02 ¢ (20)
This is the coupled differential equations we have to solve. We first notice that:
0*n 0*p
D,—=D,—
Ox? ore
which leads to the useful relation:
D Kz A
n(z) = 5op(z) = 5= = 5= (21)

where K, A are constants to be determined by the boundary conditions in the diode.
Actually if one applies equation (21) twice using the sets of parameters: {x =
Wy, plw,) = p, and n(w,) = n,} and {x = ¢, p(¢) = pn, and n(c) = n,,}, one
gets the following expressions for K and A:

(Dppno - Dnnno) - (Dppn - Dnnn)

c— wy,

K =

(22)

and
_wn(Dppno - Dnnno) + C(Dppn — Dnnn)

c— wy,

A=

(23)
Substituting equation (21) into equation (20) we get an decoupled differential equation

for p(z) which is unfortunately non-linear:

d*p . P’ — Kap/D, — A/ D, — n?Dn/Dp _

- o Fip, ) (24)
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A reasonable way to proceed is to linearize the equation above , by setting:
P=Ppo+0Op N =mn,+0n, r=c+ oz (25)

We realize that ép is positive and that én and éx are negative. Using equations (24)

and (25) we can write:

9*6p

3622 = U, + Aép + Béux, (26)
where

U,=F(c)=Us(c)/D, =0 (27)

since p(c)n(c) = pnonn, = n? and

g OF (p,x) _ 2pno — Kepno /Dy, — A/ D, (25)
ap at z = ¢ £Dn
and
po 2w _ Abn, (29)
8:1; at r = ¢ Dpan

Equation (26) is now linear, so we can solve it easily (by first finding a general solution
to the homogeneous equation and a special solution to the non-homogeneous one).
The result is:

Op=1p—ppo = aq sinh(\/Z&z;) + a2+ Mébx (30)
where M = —B/A and a4, ay are given by the boundary conditions. Actually, since
op(c) =0 and ép(w,,) = p, — Pno, we finally get:

pn_pno_M(c_wn)

sinh(\/Z(c —wy,))

From equations (21) and (31) we get the solution for n(x):

sinh(\/Z(c —a))+ M(c— ) (31)

pgase(x) = Do T

base = &pn — Pro 7 M(c— wn) sin c—x & c—x —£x M_A
n (o) = e ey (VA2 HGEM) (o) o+ %2) D)

Of course we could have solved the linear equation for n(x) and then use equation
(21) to calculate p(x). The choice depends on which concentration has values almost

equal to the terminal ones through out the base and it is under investigation.
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Using equations (31) and (32) above and equation (18) we can get a new expression

for [base:
U () = (ny(a)py">*(x) = nf) /€ =

Q+W sinhz(\/Z(c— z))+F sinh(\/Z(c— z))+R sinh(\/Z(c— z))r+Tx+ Y22 (33)

where:
Dp 2 2 2 Dp 2
Q: (D_pno_Apno‘l'M & +2D_pnoMc_Ac_nz)/§ (34)
D
= (5r?) ¢ (35)
Dp
R = <2D—pnOFMc _ AF) /¢ (36)
D, - - 2
T = <2D—pnoM — Kpny, — KMe—2M c) /¢ (37)
Y = (KM + M?) /¢ (38)
and
[ = B = Poo — Mlc = wn) (39)

sinh(\/Z(c —wy))

The integral of the recombination rate (33) from w, to ¢ will give us the current

density due recombination in the n base:

Tty = € [, UL (w)da =
Qe— o)+ W (=(c = w,)/2 + sinh(2V/A(c — w,))/(4V/A)
+B (401 = cosh(v/A(e = w,))))
+R (=5 + VAw, cosh(VA(e = w,)) — % sinh(vVA(e - w,)))

FT(/2 = w2 [2) + Y (¢/3 — w/3)

(40)

Let us now proceed with the depletion region. If we follow the same principle of

drift-diffusion cancelation, we get the same concentrations with the classical approach
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(equations (13) and (14)). If we use formula (18) for the recombination rate, we get,for

the depletion:

2
nTln — ni
U (@) = P (41)
£
So the depletion current density due to recombination in the n-base becomes:
depl n o depl Pnlin — n?
Jrefomb = 6/ Us = €W, 5 - (42)
0

4 The Exact Approach

Now let us use the exact relation for Us(x) (equation(3)). The coupled differential
equations become:

In(x) n(x)p(x) —n} p Oplz) _ n(z)p(z) —n}

Dn 0x2  ry(n(z) 4+ n) + ma(p(z) +n;)’ P oxr m(n(x) +n) + Ta(p

Equation (21) is still valid, so we can write the following dicoupled equation for p(x):

62}?_ (p/Dn—[(x/Dn/Dp—A/Dn/Dp)p—n?/Dp o
D s = (Do D — KD — N Dy 1) 4 malp ) ) ()

We can now again realize the last equation, by using relations (25). We then get the

linear equation:

9%*6p
=U + Aép+ B'S 45

8(51’)2 o + P+ L, ( )
where

U, = 1"(c) =Usc)/Dy =0 (46)
since p(c)n(c) = pnonn, = N7 and

A/ — aF(p,l’) —

dp at z =c¢

(2D,p/D,, — Kz/D,, — A\/D,)D — (D,p*/D,, — Kpx/D,, — Ap/D,, — n?)(DZTp/Dn + D,7)
D2

(47)
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and
- OF (p,x) _ (Kp/D,)D + (D,p*/D,, — Kpx/D, — Ap/D,, —n?)(KD,/D,7,)
O at z = ¢ D?
(48)
where
D = 1,((Dppro/ Dy — Kc/D,, — A/ D,y + 1) + 7 (Pro + 1) (49)

Now we can easily solve the linearized equation (45) and apply the boundary condi-

tions to calculate the arising constants. The solution is the equivalent of equations

(31):

base _ Pr = Pno = M'(c —wy) T e n
P = e e (Ve — ) sinh(VA/(c —2)) + M'(c =) (50)

From equations (21) and (50) we get the solution for n(x):
Dp Prn — Pno — M/(C - wn) D K pnon_ A

ngm:D—n (/e — ) smh(@(c_x))ﬂD—iM')(c_x)_D—nH( Dn(51)D—n)

where M’ = —B’/A. Using equations (50) and (51) above and equation (3) we can

get a new expression for [P

e (o)) — n?

Ubase z) = i 52
() rp(Dppgase(x)/Dn — Ka/D, —A/D,, +n;)+ Tn(pg““(x) + n;) (52)
JbaSe — e /wn ngase(x)pgase(x) - nlz dx
recomt o Tp(Dppe(x) /Dy — K/ Dy — A Dy + 1i) 4+ 70 (p5* () + 1)

(53)

It seems that it is difficult to calculate the analytic form of the integral of (52). But we

can always calculate it numerically and compare the result with other approximations.

Another approach is to consider the denominator of equation (52) constant ( ~ ¢ ).

Then we can proceed to the integration and get a result equivalent to the semiexact
case.

Now, for the depletion region we just use equations (13) and (14). The recombi-

nation current becomes:

Jlert e/w" nilepl(flf)}?ilepl(f) —n} dx
recomb 0 Tp(Dpp;lepl(x)/Dn — [{Jj/Dn — ADn + nz) + Tn(p;lepl(x) + nl)

(54)
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which again is difficult to calculate analytically, but numerical methods can be incor-

porated.

5 Numerical Example and Comparison

We now compare the results we obtained in the previous three sections by using a

numerical example. The values we use for our physical quantities are:
c=5-10""- em

ni =17.82-10" cm™
D, =26 cm?/sec
D, =26 cm?*/sec

-1

Nne = 101% cm

Pro =3 /Npo = 611524 cm™

Vie = 0.727 'V
V=025 V
Pn = Pro - eevj/kT = Do - evj/s.617/10—5/300 —9.69 - 109 cm— L

Ny = Npy = 10 em™

W =1023-10"° cm
w, = W/2=5.13-10"° cm
tn =107 sec
tp=10"" sec

Using equations (10), (40) and (53) we get the following solutions for the base

current density due to recombination:
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Jhrse = 1.56261 - 10'%e = 2.5033 mA It we use the Classical approach
Jhase | — 2.0025 - 10%e¢ = 0.3 mA If we use the Semiexact approach
Jhese = 1.56241 - 10" = 2.5029 mA If we use the Exact approach

For the depletion region current densities due to recombination we get (using

equations (16),(42) and (54)):

Jg:folmb = 292383 -10%c = 0.468 A It we use the Classical approach
ijfjmb = 4.975-10%e = 0.79 mA If we use the Semiexact approach
ijfjmb = 6.35943 - 10'% = 10.19 mA If we use the Exact approach

We see that for this particular example, the semiexact approach underestimates
the current density of the base, but it is closer to the exact value in the depletion
region. The classical approximation is satisfactory for the base of the diode, but not
for the depletion region. Actually, since there is not satistfactory consistency between
the three methods for the depletion region, we have to investigate further the validity

of our recombination rate approximations.

6 Conclusions

In this paper we tried to calculate explicitly and analytically the carrier concentrations
and current densities of the base and depletion regions of the diode. We described the
classical approximations and developed solutions for the coupled differential equations
describing the system, for the semiexact and exact case ( refering to the expression
for the recombination current ). We described a particular arithmetic example and

noticed different results, for the three approaches. The question of how the applied
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voltage and the approximations incorporated influence the different approaches is

under investigation.
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